

Numerical Analysis and Computational Mathematics

Fall Semester 2024 - CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 10 – November 20, 2024

Linear systems: iterative methods

Note: in this series you will need the MATLAB functions implemented in Series 9.

Exercise I (MATLAB)

Consider the general linear system $A\mathbf{x} = \mathbf{b}$ with $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$.

a) Write a MATLAB function preconditioned_gradient.m that implements the preconditioned gradient method for the solution of the linear system. The stopping criterion should be based on the norm of the residual: $r^{(k)} = \|\mathbf{r}^{(k)}\| = \|\mathbf{b} - A\mathbf{x}^{(k)}\| < tol$. Use the function preconditioned_gradient_template.m as template:

```
function [ x, k, res ] = preconditioned_gradient( A, b, P, x0, tol, kmax )
% PRECONDITIONED_GRADIENT solve the linear system A x = b by means
% of the Preconditioned Gadrient method; the preconditioning matrix must be
% non singular. Stopping criterion based on the residual.
  [x, k, res] = preconditioned_gradient(A, b, P, x0, tol, kmax)
  Inputs: A
                = matrix (square matrix)
                = vector (right hand side of the linear system)
                = preconditioning matrix (non singular, same size of A)
           x0 = initial solution (colum vector)
           tol = tolerence for the stopping driterion based on residual
           kmax = maximum number of iterations
  Outputs: x
                = solution vector (column vector)
                = number of iterations at convergence
           res = value of the norm of the residual at convergence
return
```

(*Hint*: use the MATLAB command \setminus to solve, at each step of the iterative method, the linear system involving the preconditioning matrix P).

b) Set
$$n = 4$$
, $A = \begin{bmatrix} 5 & 1 & 1 & 0 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 0 & 1 & 1 & 5 \end{bmatrix}$, which is symmetric and positive definite, and **b** such

that the exact solution is $\mathbf{x}=(1,\ldots,1)^T$. Solve the linear system $A\mathbf{x}=\mathbf{b}$ by means of preconditioned_gradient, without preconditioning, i.e. setting $P=P_1=I\in\mathbb{R}^{n\times n}$, the identity matrix. Then, set as preconditioner $P=P_2\in\mathbb{R}^{n\times n}$ the tridiagonal matrix extracted from A. Set tol= 10^{-6} and $\mathbf{x}^{(0)}=(0,\ldots,0)^T$.

- c) Consider the Jacobi and Gauss-Seidel methods. When applied to solve the system from point b), do they converge for any choice of $\mathbf{x}^{(0)}$?
- d) Plot the norms of the residuals $r^{(k)}$ vs. the number of iterations k for the preconditioned gradient methods with $P=P_1$ and P_2 given at point b), but also those obtained with the Jacobi and Gauss-Seidel methods. Which of the methods converges faster? (*Hint*: set tol= 10^{-14} and calculate the norms of the residuals corresponding to the iterative methods for kmax= $1, \ldots, 50$.).

Exercise II (MATLAB)

Consider the general linear system $A\mathbf{x} = \mathbf{b}$ with $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$.

- a) Define A as the Hilbert matrix of dimension $n \times n$, i.e. the symmetric and positive definite matrix such that $(A)_{ij} = \frac{1}{i+j-1}$, $i, j = 1, \ldots, n$. Specifically, set n = 15. Is the stopping criterion based on the *relative* residual satisfactory for the solution of a linear system associated to the matrix A by means of an iterative method?
- b) Verify the answer given at point a) for the Gauss-Seidel method. Define **b** so that the exact solution is $\mathbf{x} = (1, \dots, 1)^T$. Set $\mathbf{x}^{(0)} = (0, \dots, 0)^T$. Consider the stopping criterion based on the relative residual (instead of the criterion on the norm of the residual implemented in Series 9), with a tolerance $tol_{rel} = 10^{-5}$.
- c) Consider the tridiagonal matrix

$$A = \begin{bmatrix} (4+\beta) & -2 & 0 \\ -2 & (4+\beta) & -2 & 0 \\ 0 & -2 & (4+\beta) & -2 & 0 \\ & & \ddots & \ddots & \ddots \\ & & & & 0 & -2 & (4+\beta) & -2 \\ & & & & 0 & -2 & (4+\beta) & \end{bmatrix}, \text{ with } \beta > 0,$$

and let $\beta = 5 \cdot 10^{-5}$. When solving a linear system with matrix A by means of the Gauss-Seidel method, is the stopping criterion based on the difference between successive iterates satisfactory?

d) Verify the answer given at point c) by solving the linear system with **b** corresponding to the exact solution $\mathbf{x} = (1, \dots, 1)^T$. Set tol= 10^{-5} and $\mathbf{x}^{(0)} = (0, \dots, 0)^T$. Note that the MATLAB function gauss_seidel.m from Series 9 should be modified to implement the stopping criterion based on the difference of successive iterates.

Exercise III (Theoretical)

Consider the linear system $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$. For its numerical solution, we use an iterative method, where \mathbf{x} is obtained as the limit of the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$. The iterative method is in the form:

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{g}, \qquad k = 0, 1, \dots,$$

for a given initial solution $\mathbf{x}^{(0)}$, iteration matrix $B \in \mathbb{R}^{n \times n}$, and vector $\mathbf{g} \in \mathbb{R}^n$. We assume that there exists an invertible preconditioner $P \in \mathbb{R}^{n \times n}$ such that $B = I - P^{-1}A$ and $\mathbf{g} = P^{-1}\mathbf{b}$.

Specifically, we set
$$n=2$$
 and $A=\begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$.

- a) Set $P = P_1 = \beta D$, where $D \in \mathbb{R}^{n \times n}$ is the diagonal matrix extracted from A and $\beta > 0$ is a parameter. Which iterative method do we obtain for $\beta = 1$? Calculate the values of β for which this iterative method converges for all $\mathbf{x}^{(0)}$.
- b) Calculate the value of β for which the iterative method from point a) exhibits the fastest convergence rate (for any choice of $\mathbf{x}^{(0)}$).
- c) Repeat point a) by setting $P = P_2 = \beta (D E)$, where E is the lower triangular matrix such that $(E)_{ij} = -(A)_{ij}$ for i = 2, ..., n, j = 1, ..., i 1.
- d) Repeat point b) by considering the preconditioning matrix P_2 from point c).
- e) Which of the two preconditioning matrices P_1 or P_2 and which value of β would you choose to ensure the fastest convergence of the iterative method, starting from a generic initial solution $\mathbf{x}^{(0)}$?